Case Study: Analyze different results from IBIS simulators

Lance Wang <u>Iwang@iometh.com</u> DAC 2009 IBIS Summit San Francisco, CA July 28th, 2009

Motivations

- Found some unexpected results when validating an IBIS output model
- Then, used 4 commercial spice/ibis simulators, trying to see how others predict
- Sharing the experience

IBIS model

An Output model

- 1.2 v VCC (typical corner)
- Output type model with pullup and pulldown curves only
- Differential Pin defined
- One set of VT curves
- Passed IBISCHK with 0 error, 0 warning

 [Package]	I					
variable typ		min		max		
R_pkg 0m Lpkg 0n			Om	Øm		
		Øn		Øn		
C_pkg	0p		0p	0p		
			·			
İ		PIN				
[Pin] si	ignal_name	model_na	model_name		pin C_p	in
G1 Τλ	(P te:	st_output	_output			
G2 Τλ	i2 TXN tes					
		DIFF PIN				
[Diff_pir	1] inv_pin	vdiff	tdelay_typ	tdelay_mi	in tdelay_m	ах
_ G1	62	NA	NA	NA	NA	
!						
[tost output					
Model tur	na Autout					
Polaritu	Invorting					
Fnahlo	Octino-Hi	nh				
	HCCIVE HI	y.,				
Vmeas = 0	0.65					
ļ		typ	ı	min	max	
l C_comp		1.2p 1.	1p 1.3p			
[Voltage Range]		1.1 0.9	38 1.2			
[Temperature Range]		50 113	50 113 -3			
******	******	*********	****	*********	******	****
Ì						
[Pullun]						

The first test

- Stimulus
 - 22ps rising/falling edges
 - 0.4ns pulse width
 - Pattern: 11001010
- Test Load
 - 100 Ohm differential termination

Differential outputs

Single-end outputs

The second test

- Stimulus
 - 22ps rising/falling edges
 - 0.4ns pulse width
 - Pattern: 11001010
- Test Load
 - Direct connect to an IBIS receiver (Input)

Differential outputs

Single-end outputs

Copyright © 2006-2009 IO Methodology Inc.

Try to analyze

- Check IBIS files
 - Driver and receiver
 - IV curves and VT curves
- Check with simulation results
- Some conclusions?

Driver IBIS IV curves

IO Methodology Inc.

Driver IBIS VT curves

Receiver IBIS IV curves

Simulator1 and Simulator3 results

Copyright © 2006-2009 IO Methodology Inc.

VT curves and Simulator1 / Simulator3 results

IO Methodology Inc.

15

Inconsistency in pullup/pulldown & VT curves in the working range

Copyright © 2006-2009 IO Methodology Inc.

Analyze

- Single_p and Single_n swings are between ~760mv and ~940mv
- Small receiver load (~ 5 ohm) moved working range up to inconsistency driver IV/VT curve area
- Simulators are guessing the results

Conclusions

- It should be what we learned

- For validations
 - We need to go down to the application level. The normal test load validation maybe not enough.
 - Simulators will guess if there is no enough data to be calculated. No one could claim the guessing is accurate.
- For IBIS models (Making)
 - Make sure to give consistent VT/IV curves in your buffer working range.
 - The accurate IBIS models should give simulator enough data for processing. Anything simulator has to guess, it will be not accurate.

Simulated without VT curves

